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ABSTRACT
A priori error estimates for Galerkin methods for numerical approximation
of the coupled quasilinear system for c¢ = c(x,t) and p = p(x,t) given by
V-la(x,c){Vp - y(x,c)Vz}] =0 ,

ac
at ’

V.[b(x,c,Vp)Vc] - ulx,c,Vp)Vc = ¢ (x)
for x€ Q, t € (0,T], and appropriate Neumann boundary and initial condi-
tions are considered. Equations of this type arise in models for the miscible
displacement of one incompressible fluid by another in a porous medium.

Estimates for both continuous time and fully-discrete time Galerkin methods

are presented.

AMS (MOS) Subject Classifications: 65M15, 65N15, 65N30, 76.35
Key Words: Galerkin methods, Error estimates, Fluid flow, Numerical analysis
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SIGNIFICANCE AND EXPLANATION
Equations of the type stated in the Abstract arise, for example, in

models for the miscible displacement of one incompressible fluid by

3 another in a porous medium as in chemical flooding of o0il wells to recover
more of the oil. The variable ¢ = c(x,t) corresponds to the concentra-
tion of the fluid used for the flooding process while the variable
p = p(x,t) corresponds to the pressure at the location x in the medium
at time t.

This paper gives error analysis and error estimates for certain
numerical methods for approximate solution of the coupled quasilinear
system of parabolic partial differential equations in the Abstract.

Both continuous-time and fully-discrete time methods are presented and

analyzed.

The H\:ﬂ\)hﬁibiliﬂ’ for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




GALERKIN METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS IN POROUS MEDIA
Richard E. Bwinql and Mary Fanett Hhoolotz
1. Introduction
We consider the numerical approximation by Galerkin methods to a problem arising in
the miscible displacement of one incompressible fluid by another in a porous nidlun.
A set of equations [6] and [9) modeling the pressure p(x,y,t) and the concentration

c{x,y.,t) 1is given by

X k
2 2 3 2 3
a1y = G GR-vier 32) + 53; Gy GR=wtor 48] -2y -2y = qouy

uic) ax n(c) ‘dy d X x 9y Yy
and
) dc 9 dc
™ (a(¢,D,c,Vp) o = uxc) + 3y (6(¢,D,c,Vp) T uyc)
9 9c 9 dc
(1.2) + 3y (B($,D,c,Vp) ax) * (B(¢,D,c,Vp) ay)

= 000y) 24 ayEy.t)

for (x,y) € 2, t€ J = (0,T], where the reservoir Q is a bounded domain with boundary
3N. Here kx = kx(x,y) and ky = ky(x.y) are the permeabilities in the x and vy
directions respectively, u = p(c) is the local viscosity of the fluid, Yy = y(c) is
%% and %3 are the components of the dip angle, and q, the imposed

total flow rate, is a linear combination of a finite number of Dirac measures, (i.e.

its density,

sources and sinks). The function ¢ = ¢(x,y) 1is the porosity and D = D(x,y) is the
molecular diffusion level. The components of the dispersion coefficient, «a, § and B8,
are functions of porosity, diffusion, concentration, and the gradient of pressure. It

18 not uncommon in petroleum reservoir engineering for one to assume that 8 = 0 and
a=a( and & = 8§(D) (see [9]). The function ¢ is equal to the specified concentra-

tion at injection wells (sources) and to c(x,y,t) for production wells (sinks). No flow

1'l'he Ohio State University, Columbus, Ohio 43210.

znlce University, Houston, Texas 77001.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and Grant No.
DAAG29-78-G-0161. This material is based upon work supported by the National Science
Foundation under Grant Nos. MCS78-09525 and MCS878-00913.
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conditions are asmumed on the boundary of the resmervoir and an initial concentration is given .
throughout the reservoir. For a general dimcuasion of the physics of miscible displace~ y
ment problems in reservolr engineering the reader (s referved to Peaceman (71, . ‘

In the Galerkin procedure we shall use different subspaces of Ml(u) to approximate [ ;

pressure and concentration, We note that, if  o(x,y.t) 1, then (1.1) and (1.2) ave

identical. In this case we are forced to use the smame approximating submpaces for

pressure and concentration. We are thus led to replacing (1.2) by the non=diveruvence form L
R de J de R do A . de RIS RIS
ot o 8 = 2 A4 o ) . IR .
a (0 aﬂ ' W ( \w) 'y (s Qx) ‘i (8 .1\:) U ax T Yy dy
(1.3)
-t ¥ g @ - o ~
at Y 3 . » ;

which 18 obtained by multiplying (1.1) by ¢ and subtracting the result from (1.2).

i

Settari, Price, and bDupont (9] presented, without analysizn, a fintte element method o
solving (1.1 =(1.3) with 8 © 0. For simplicity, we shall treat the coupled quasilinear

system with dependent variables o = ¢(x,t) and p = p(x,t) given by

| (1.4 Vela(, @) (% = yix,e)Vell = 0,
é 2 :
| (1.%) Veolbix, e, VP Vel = u(x,e,Vp) Ve = $(x) 5 ° i
] ’ for x¢ 4, t e (0,T), wisre & {2 a bounded domain in Rd. 4 = 2, with boundary
{ M and u(X, ¢ VP) = “aix, ) (VP = y(x,0)Ve)  in a vector in I<". The analysisn :
\ for (1.4)-(1.%) eamily extenda to the case (1.1) and (1.1) where mixed X = y deriva-

tiver are present. We aszaume that the following boundary and initial conditions hold:

! (1.0) a(x.c){’m = yix,e) *\-‘-} = 0, xe IR, te g, |
v v | X
¥ . 5
(1.7) bx,c,Vp) s 0, xe W, e J, T’i
L
. _— ) |
(1.8) X, 0 ‘0(’“ y RE R, 1
where ::: iz the normal derivative of  on the boundary of . We note that

(L) =(1.8) will define pix,t) only to within an arbitrary constant, We shall




normalize p by the condition that

(1.9) ]—‘T [ plx,trax = 1, 4
2l

where |ii| is the measure of Q. We note that for (1.4) and (1.5), we have chosen

q 0 in (1.1) and (1.3). If q 1is assumed to be smooth, which corresponds to smoothly

distributed sources and sinks, the analysis follows with few changes.

The paper consists of three additional sections. In Section 2, the continuous
time and discrete time Galerkin procedures are formulated. Assumptions on the coefficients
corresponding to the physical problem and smoothness assumptions on the solution are
given. Methods are presented which allow the approximations for concentration and
pressure to lie in different subspaces of Hl(ﬂ). In Section 3, a-priori error estimates
for the continuous time approximations are given. Optimal L2 rates of convergence are
established for the case where the dispersion coefficient depends only upon molecular
diffusion using subspaces of the same order of approximation. In the case that the
dispersion coefficient also depends upon the Darcy velocity, we obtain an optimal L
rate using a subspace of one higher order for the pressure than for the concentration.

In Section 4, these results are extended to the discrete time case.
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2. The Finite Element Methods and a Precis of the Results

Let (u,v) = f uv dx and "u”2 = (u,u). Let N:(Q) be the Sobolev space on
Q
with norm
1
! g
L (M %

ol 5 = {I i

s
with the usual modification for s = &, When s = 2, let HQ!‘HX - "Oll X = "Ollk. 1t
1 "2 .
Uf = (£ ,f) write | ve]| in place of (J|€ [|% + |l£,11%)%. Also wP(a@) winl
1'%2 W 1 LU

s s s
denote the usual Sobolev space on Q.

Let (Nh) be a family of finite-dimensional subspaces of Nl(n) with the following
property:
For p= 2 or p =, there exist an integer r > 2 and a constant K

Q
such that, for 1 <q <r and ¢ ¢ N:(n):

(2.1)

inf {[le- xll
x(Nh "p b

s njle =xll )} < x_[lell
w! L

-
<

P

Similarly, we define a family of finite-dimensional subspaces of nl(n) called (N }

which satisfies the same property as (M } with r

h

h

replaced by s. We also assume

that the families (Mh) and (Nh) satisfy the following so-called "inverse hypotheses":

q
= .
a  lell o s xgh “llell = xpn Yiell, ana
b
(2.2) L
b flvell < kTHIvell

L (")

Restrict {Q as follows (with § denoting the

collection of restrictions):

3
(s) 1) Q@ is H -regular, i.e., if
“4v ¢+ Bv = , xeq, Awaq or I
v
a2 B X € 0 .
REY
and (&.1) ¢ f nde = 0 if 8 =0 ,
RIY
then
ell, < xe@cliell + Inll 0 s
% HT )
2) M 1is Lipschite.

wd=

|
i
{
i
|
H
|
]
i

P
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h B b(x;C.vp) g b(x;Cppxlpy)

u = u(x,c,Vp) = (ul(x.c,px). uz(x.c,py)) .

For some ¢ > 0 restrict the variable q1 to lie between

-

ELq S1¢ .

Assume the following regularity for a, Y, b, u, and ¢:

(Q): 1) There exist constants a,, b,, ¢,6 and K, such that

a) 0 <a, <alxq) <K ,

b yeap| <x

) 0 <¢, <éx) <K

’
(2.3) ;
a  |vzo| <k
e) 0 < b. < b(x.;!:qzrqa): &'qzqu € R,
f) Iui(x,qqu4)l < Kl(l a lqdl)' i= IIZIQ4 € R,
@) [bx,e,vp)| <K .
2) There exists a constant M such that for (c,p) the solution to (1.4)-(1.8)
and for (qz.q3) € Rz, i=],2,
2 du
3a 3y b i
Iac (x,q)) | + |32 (x.ql)l + =5 (x,c,Vp) | + e, (x.ql'VP)
dc 1
au, 2%, a%, a%u,
(2.4) + === (%,4,,9,)} * 30— (x,0)| + |—= (x,6,¥0)}| * |7 (x,0)
A qu p S| axiaqz acz acaqz
b b b
W -—aql (x,qupx'py) * 3q2 (x.ql.qz.q3) + aqa (x.ql.qz,q3) <M.

The assumptions made on the coefficients in (Q) are physically motivated. In the

general miscible displacement formulation (1.1)=-(1.3)
2 2
u u
uso{n +u£~——3—+ —L},
[{hw

a
© Ml

u_u
" g = O{D + (a, - a.) _x_..x_} . and
3 t
lllalll

5=

WY e " ~ Y R
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2 2
u u
é-O{D‘al*J—out X }
Hwil Wl

where |lull| « JC: » u;j and a . and a, Are nonnegative constants (see (6] and (2]1). One
can show that a, 8, and § satisfy the conditions assumed for b, that kx/u(c)

and ky!u(c) satisfy those for a, and that u, and uy satisfy assumptions made

on the u .

Let

el - “!Iot-.t)ux’L : l<qeem.

L a0 Tab)

Let (p.,c), the solution of (1.4)-(1.8), satisfy the following regularity assumptions:

lac
(R): a) Hell . ,-~1‘ E + lp)l < R e
L anh) [ae . taem™) (AR ) .
i RIS 3% ap
o e
L tn” )y ¥ ~ 1 at 4 ~

L (W 2 2
b ) Lo L)

for some ¢ > 0,
The analysis proceeds, fol'owing Wheeler [10), using a pair of auxiliary elliptic
problems. Let ; ¢ Nh be the elliptic projection of p into Nh defined by

(2.6) (A, e,V W) = (a(+,c(+,))0, W), v e Nh '

for each t € J, where

2.7 r%l I P(Nt)d% = 1, for each te J '
ol I

and where (p,c) is the solution of (1.4)-(1.8). The restrictions (S) imply the follow-

ing result.

L J.1. There exists K,  « K‘(G.:‘.KO.K ) such that

. KLY R} 1
2.8 e ~ pll * nllvw- | < K,'\’JIPHa .
Let \ > ) be chosen sufficiently large that the bilinear form
B, x) = (B, VpIVe,VX) ¢ (u(e,Vp) W, ) + A (y,Y)

S - 2 |
i8 coercive over H (). let ¢ ¢ %‘ be the elliptic projection of ¢ into 53“ defined by

. Ae
(2.9) B(C,W) = B(c,w) = =(§ ;i. W) ot (e, we N, 5

h

S——

e O o bkl

4 et csaaib
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for each t € J. Then, as in [10) and (3], we can obtain the following lemma.

3 - :. '..'.
lemma 2.2, There exists x‘ K‘(x b, .\ ko kl

K, M) such that

- Ale = ¢) .
o lesell, oM eulle el ,
2 ) > Nl ¢
L (JiL7) vt LT (0iNH7)
T i e
(2.10) T KGh {Hc., & s "t }
L (H) L.(er)
M Nesol ooy xmatiell oo
L (:L) L (J:R%)
Assume that there exists a constant K\ such that
(2.11) L GRS B . €
L (L) L (L)

See 121 and [10) for some sufficient conditions for these assumptions.

We first consider continuous time approximations of  (p,¢). Denote the approxima-

tionof p by P 1 [O,T) = .\'h and the approximation of ¢

€ 10,1] ‘Ih,

where  (F.0) 18 defined by the relations: (we suppress the dependence of the coetffi~

cients on  X)

{2.12) (A VP, VW) =« (a{OyO) Ve, VW), Ve Sh .

and

(2.1%) (BC,VRIVC, VW) ¢ (u(C, V) -VC,w) ¢ (@ ::-:.w) - Q, w ¢ .Vh ¢
with

(2.1} Ci(x,00) = c(x,0) .

where ¢ 18 the elliptic projection of ¢ defined in (2.9,

abtain a priori estimates for ¢ = ¢ and for V(p = P).

In Section 3, we shall

Next, we define a fully discrete, O(At)-correct method for approximating (p,.o)

‘\
baded on backward differencing in time. Let At > 0, N = T/At ¢ @, and t = QgAt,

v v n ne
¢ ¢ R, Also, let ;4‘ - \~‘(x‘ = yix,t) and d‘v" - (¥ .

\ N .
approximation of p by W {0 = ¢ .t‘.....t - 1) e .\'h and the approximation of ¢

n
- ¥

) A, Denote the

-

r T S e




n
by 2 :{t ,t',...,t') » M . Assuming that W' and 2 are known, we determine

h 4
W ad 3™ s Poliows: R
B
+1 #
(2.15) 9a,2% % o o, W™ v ¢ iz w®) ™,y - o, vewn :
i and
. +
| (2.16) @E™hHow oy = aeE™hy ™), yenN

h .
where ) = 0 Oor 1. Ve aote that the coefficient matrix arising from the algebraic

system (2.15) with 3 =« 0 1s symmetric. However, in many problems the transport term

is large and it may be numerically advantageous to use (2.15) with j = 1 even though
the coefficient matrix 1s no longer symmetric. Both discretizations are O(At) in

time. In (2.16) no explicit time discretization error is made. A priori error

n n g :
estimates will be presented for e - g and V(P - W) in Section 4.

n+l/2 nel n

let f (f + £)/2. If (2.15) is replaced by
1 1
. an =n n ,~"’2 ~n n ~"‘2
(2.17) (Odta %) ¢ (b(EZ ,VEW V2 V) + (u(EZ ,VEW ) V2 V) = 0, Ve Mh '

5n-l

sn 3 = . .
where EZ2 = = 2 4 + An analysis similar to that given in Section 4 (see [8],

'
[

>
{101, {2) and [5)) will yield a time discretization error of size O((At)7).
When estimating the actual physical quantities, we know that the pressure is much
smoother in time than the concentration. Thus, in practice, one should not use (2.10) }
el P a1
to redetermine VW at each time step. Instead one value of VW should be used
in the coefficients of (2.15) for several time steps before a new pressure is approximated.

One way to view this procedure is to have two different time steps for the different

equations. An analysis of this method will follow in a more general paper.

8=
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3. A Priori Error L.timates for the Continuous Time Approximations

In this section, we develop a priori bounds for the errors (c - C; and V(p - P).
We shall see that if b depends on Vp then for the best rates of convergence one
should use subspaces of piecewise polynomials of different degrees for (Nh) and (Nh).
We first obtain an estimate for P - 5 where P is defined by (2.12)-(2.14) And ﬁ
is defined by (2.6)-(2.7).

We assume that for some € > 0, € < €, (see the statement preceding Q),

(3.0) -€

A

Cx<1l+*eg.

We shall prove that

lle = cll = om®™ +n*™h ,

which yields

(3.1) e ~cfl . c e 5
L

Since 0 < ¢ <1, one can deduce from {3.1) with the restriction r > 2 and s >3

that (3.0) holds for small h.
Lemma 3.1. There exists a positive constant K6 = Ka(a..xl
lve - ol <xlle -cll, eea.

,KS.H) such that

Proof. Subtract (2.6) from (2.12) and use (1.4) and (1.6) to obtain
(3.2) (a(Q)V(P - p),%) = ([alc) -a(C)1Vp, W) + ([a(C)Y(C) - alc)y(c))Vz, VW), veN
If v=P-pe N, . then
allve-plI* < [@@ve - 5@ -l <xlle-cll [ve- pl

(3.3) % 2
. =i e 2
7 Iv@- 21" + 5= lle- <l teyg,

S

A

where K, depends upon uniform bounds for |%1| " I31| , |vz|, ana |/vp|| . The
< o4 L7317
result of the lemma follows directly from (3.3).

We next compare C and ¢, defined in (2.12)-(2.14) and (2.9), respectively. We
shall make an additional assumption on P defined in (2.12)-(2.14). Assume that there
L
exists a positive constant K such that

(3.4 loell . <x".
L (J:L)

*
Without loss of generality, assume K > 2Kg.

-

il s oM

= T

S




Theorem 3.2. There exists X, = xa(x.h_,o,,mxi,i < 611(.) such that

5 - "3 s-1
(3.5) e = <ll R Ch llvic- | AT T T e

L (J;L7) L™ (J;L%)
If s and r from Lemmas 2.1 and 2.2 satisfy s >3 and r >2 and h Is taken

sufficiently small, then
(3.6) [loe]| < 2K, < K

Sl DT e M

w
and a Ke above can be chosen which is independent of K .

Proof. Subtract (2.9) from (2.13) to obtain

(b(C,VP)V(C - &),%w) + [a K., w] = ([blc,p) - b(C,VP)1VE,Vw)
(3.7 + [0(2‘5 - %%),w] - (B(C,TP) <T(C = S) ;W)
+ ([u(c,Vp) - u(C,VP)]-Vc,w) + A(c - c,w), weM .

Next, letting w = C - ce Mh' integrating the left side of (3.7) from O to t and

using (2.14), we obtain

t £
T al (C - &).(c-a&dr + [ (blc,/P)V(C - ¢),V(C - &))dt
0 Y 0

(3.8)

[N < t %
> le-awl? +b, [ lwe- o @lar .
0
We next use (2.8), Lemma 2.2, Lemma 3.1 and Holder's inequality to see that

t
|/ (ibte,9p) - b(C,VP)1Ve,V(C - &))dt|
0

t
sxpllvell o o [ dle=cll + llve - »y|hlvic - & Jlac
L (L) Q

A

t
Ko [ lle=cll+ lle=cll+ v - BrIhllvee - & [lar
0

(3.9)

I A

b, t E 3 t 3 4
Tf [lv(c - &) () || “ar + Kll f ”(C - &) (v || “ar
0 (\]

t
sk, [ Ul = a@l® + e - 5 e
0

e = & o lPar ek n*F o 0?72

b, t ; 4
< «4—(}; Ivec = &) (o) || “dr + K11£ .

=10~

i

e el 0 i

——

et e ) ..gA.‘ -

s -




Here Kll depends upon M, K

L Ksc Ke

’ KS’ K and b., while K depends upon M, K., K., K

1 6' 13 Tt Tl |

and b . We can similarly obtain the bound

s . 2
[ lle-a o||ar+ x

14 0

t
(3.100 | (lute,Vp) = u(c,9p))+ve,c - aar| < k 5
Q

Next, from (2.3), we note that

|
I/ @,ep) v - &),c - dar|
0
(3.11) Sy L L : 3
suhetlivll . | » 8 [ Il = & ||“ar+ -;;f [lvic = & (n) ]| “ar .
L (J;L ) 0 0

Then using lemma 2.2, we obtain

® [ e e . ol t 5 2
eaa |/ [o —-;).c-c)drwj (c-c,c-dar] <k [ |lc-3 (0)|“ar+ x
Qo Q

7h2‘ g
0

at

17 1

Combining like terms in the estimates (3.8)-(3.12) and the assumption (3.4), we obtain,

from (3.7),

<

b, %
5 le-awl|? « 7‘}' Ivie - & (v || %ar
(3.13) 9

t
<K (J; lle = & o lar « x 1+ 0272

1

*
where Kxa depends, in particular, upon K . Then applying Gronwall's lemma to (3.13),

we obtain

(3.14) e -l o 5+ lvee- ol o AR W
L (JiL%) LE(L°)
where we note that
1.15 (x, k")
(3.15) Koo S Ky expiK, K .

To complete our argument, we must show that for h sufficiently small (3.6) holds.

We use Lemma 3.1,

(3.14), and (3.15) to see that

(2.2), .11,




© anat ARSI T

[lee]]

§ A

Hvew-oll . ¢ Nlwsll

- - -
L (L) L (L) L (J:L )
-1 <
<K, KW= pll
¥ AR 1S R
. tlle- &l I - el
< K + KWK {]le- el +le - el )
- g
LR S 1 Lt
"2 r-1 8-2 -1
SRe t xoxbxnaxp(xux Hh +h ")+ xoxzx‘x(‘h .

Then clearly 1t h s taken sufficiently small, and if r >2, and s *» 3; then

-

(3.17) lerll K .

o« L
L (J:L)

A

5

We see that, from (3.5), in order to get the best rates of convergence, one should

use a space of piecewise polynomials of degree one greatexr for Nh that for Nh. For

example, the use of piecewise linear polynomials (r = 2) for Mh and piecewise

quadratic polynomials (r = 3) for &, would yield a rate of convergence of the

h.
form o(hd) for C - o.
We next combine the results of Lemma 3.1 and Theorem 3.2 with Lemmas 2.1 and 2.2

and the triangle inequality to obtain the following result.

Theorem 3.3. There exists a constant R23 such that
(38 wjjvee - py ) g * lle = ell i L thflvie- ol 5 b KN«(hr « 5N
Lo(0iLh) L (3:L°) LS L") '

Some mathematical models for miscible displacements which are currently being used
by 011l companies make the assumption that the coefficient b in (1.2) does not depend
upon  Vp, but only upon x and <¢. Making this assumption, we obtain optimal order
convergence rates in the L) norms using test spaces composed of piecewise polynomials
of equal degrees. These results involve deriving a sharper estimate than obtained
in (3.10).

Theorem 3.4. Assume b = bix,c) in (1.2) is independent of Vp. Theve exists a

*
constant K (\.b..@..K ;K 1 < ;K M) such that
L? S 4

24 = %24

Gan nfjve-p || . wjlewell , 4 onfivie-aor ), R R R
3 A 8 LE WL :

L (L)
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If either r >3 or 8>3 for r =2 and h is taken sufficiently small, then

(3.20) leell < 2K, < K

-
and a K2‘ can be chosen which is independent of K .

Proof. Most of the estimates will follow as in the proof of Theorem 3.2. Let

L =C - C. The estimate (3.9) can be replaced by

t t
v - pove,voar] <k, [ dlle=clt + llielh livellar
(3.21) . 3

2r
6h A

b, .t & t F
;—8—({ llveco || “ax “25£ eeo fi%ar + x,

In order to obtain a sharper estimate for (3.10), we rewrite

([ulc,Vp) = u(C,P) 19,8 = ([ulc,Vp) - ulc,¥p)]-Ve,t)

(3.22) + (lue,V) = ulc,Vp)1:¥(c - ¢),¢)
¢ (lute,¥p) - u(c, VP Ve,p) = Tl &y .
au‘ aui
From Section 1, we note that for u = u(c,q), Sam - 5;- (¢) is independent of q, i=1,2.
i i

Integrating the first term on the right-hand side of (3.22) by parts, we have

du u
~ Rl 1 dc J 2 dc
T = -[p - p, __.[_._. (g) === ] + .__.[..__. (¢) —— (]]
1 3xl aql Qxl axz 3q2 3x2

(3.23)

f ] e dc duy dc
+ (p = PIL5e (c) V, + 5= (¢) == v,.|d8 .
an a, Bxl 1 3q Ix, 2

Thus, from the assumed smoothness of u and c, we have

u
~ 1 ac 2 e
[ =Bt (o 5= v ¢ =2 (o) =5y Jas
0 3q, axl 1 aq2 3x2 2

G20 r <k, lle- bl el +

We now estimate the above boundary term by considering the following Neumann problem:

a) =Via(x,c)VW + ¢ = 0, Xe Q .

(3.25)

aﬂ -
b) a(x,c) v iR X € 30




du du
- 1 K1 i | ¢

:'CGl.

By our reqularity assumptions (S) and (R), we have { €

(3.27) ||W||2 < x||r|l 1/2 .
H (39)

du

‘€
We note that since c € Lo(Jyﬂz ()Y and 7—‘- = a{c) {is uniformly bounded,
9y
© 1/2+¢
(;1 € L (J;H (R)) and we have by Lemma 2.2 of [1),

{hl] < x|/l Izl
w2 (aq) V@ e w20

< xllell, -

Multiplying (3.25.a) by p - f) and integrating by parts, we see that

(a(x,0)%%,%(p = p)) + (4,p - p) = [ T(p-plds = 0 .
193

Using (2.6), we note that

- * ~ ~
(3.29) [ T - Pas = @x,c)VW - ¥ ),V (P = B+ (bp-p),
N

Hence, by (2.1), Lemma 2.1, (3.27), (3.28), and (3.29), we have

LY
(3.30)

ke e [l + Ne-I el <=2 [lell® + x,.n2®
hART PP PPl HICH, < =g el 31 s
Combining (3.24), (3.30), and Lemma 2.1, we obtain

2s

(3.31) [T | < = el + xllell® + k.0
i 1' =8 1 32 33

Using Lemmas 2.2 and 3.1 we note that the third term on the right of (3.22) can be

bounded as follows

= & * 2 2
(3.32) f-r}l < K“”vc”f(a;f)(”wp- P+ k Jle=- clpllel] < x35”6“ + Kyeh R

I re-pas| < kohl|ve=p) || + [le-pllMIv]l, < kyghllve-pr || + [le-pllM Tl
H




In order to bound the second term on the right side of (3.22), we use (2.2) and

Lermmas 2.1 and 2.2. We obtain
It <k lve=mrll o, IV = ol llell < xgn®2lvee- ol liell
(3.33) L (J:L) L

2r+2s-6

2oh® el < kg olell? + kg n :

Using the estimates (3.8), (3.11), (3.21), (3.22), (3.31), (3.32), and (3.33) in (3.7),

< K
we obtain

¢ 3, ¢ b, ¢t t
S le@l® + 5 1 lveeo Par < 7 [ e lfar + kg, [ e [ ae
(3.34) 0 0 0

+ K (h2r s th e

2r02s-6)
43

h

b, t
L]
We can next add o f Hc(w)”zdr to both sides of (3.34) and use the definition of
0
the Nl norm to hide the first term on the right of (3.34) on the left side of the
resulting inequality. Then an application of Gronwall's lemma yields

r+s-3}

(3.35) llell o | R | x“(h‘ +h% +n
L0513 PR P A
The rest of the theorem follows as in Theorem 3.2 and Theorem 3.3 with the minor

modification of using (3.35) instead of (3.14) in (3.16) and the assumption that

r+s>5,

-15=-




4. A Priori Error Estimates for the Discrete Time Approximations

In this section, we develop a priori bounds for the errors e - zn and V(pn - Wn)

at discrete time levels t" where 2" and W' are defined in (2.15)-(2.16). The
results obtained will be similar to the corresponding estimates for the continuous
case from Section 3. We assume that S, O, and R and the restrictions on (Mh) and
{Nh) of Section 2 hold.

Theorem 4.1. Let z° be determined such that

0 r
a) ||z" - coll = ®ygh
(4.0) and
B) st eg ) ae,

There exists a constant K46 = xle(x,b.,o.,s:x‘.i < 6) and constants to > 0 and

hy, >0 such that if At < t and h < ho'

N-1
2
sup ||z - c“ + h2 X ”V(Z o C)n||2At + h2 supllV(W - P)'lz .
tn n=0 n
(4.1) *
2 2r 2(s-1)
< K46((At) + h +h }

Proof. Assume that 2" satisfies the induction hypothesis
Ld

(4.2) -€ < O

n ~n

X n= G,l,evcpl = 3. T T = Zn - ¢ and nn = W“ - ﬁn. Subtractinag (2.6) from

(2.16) we have, for n=0,1,...,N =1,

@E™H ™l oy = (fae™) - ac™ ™, ey

(4.3
+ + +
v (aE™y @™ - ac™ v ™) 1ve, vy, yeuw .
As in Lemma 3.1, we let y = nml € Nh' use (4.2) and (Q) to obtain
m ,
(4.4) lten ™| :K“(llc"”H L ok R SR O T

Next, subtract (2.9) from (2.15) and use the notation from Section 2 to obtain, for

n=0,1,....N=-1, and jJ =0 or 1,

-16=




(a <" ox) ¢ ™, W™t v - (Ol%% My . a,&" %)

- xite = ™0 « (™™ - b2 19 )

(4.5)
o ute™ ™) - uiE®, o) -ve™ 0

- (u(z®, W™, xem .

For simplicity, let
(4.6) el = cof.0) .

Now letting 3 w ¥ 4 ¥, and using (4.6), we estimate the left side of (4.5) by

o eE™ =M™ - eEl e e
.7

L i | b nj2 n+l) 2
> g URR™MIS - 113y + pyllwe™ 12 .

We next use Lemmas 2.1 and 2.2, (2.11), and (4.4) to see that

~n+l
.

(™, oo™ - b, W s

v

n+l 1

e o™, ™Y « 5ie®, ™Y « ntc®, ™Y - nia®, ™Y

» o2™, 9™ - b, M ¢ b2, M - biz®, e et e )
(4-9) n ~.n n n - N
< Kgolatfla ™l + Hlie= o™l + I + atlla 6"l + llvee- &l

s o™y < flee™t|

b
2 b 12 2 2 2
< xgy 112 3 e 12 kg a0 2lla 12 lla w7 ¢ kg 7 o

In a similar fashion, we obtain
+ + ~n+ i
tate™, o™ - uiz®, why).ea™, ot

¢
= ™2

(4.9) : 16 ”

2 2 2 2
v IR+ kg an 2 dla cm? o flagmet )

* th{hzr + h2(s-1)} :

Next, from (2.3 f), we note that

§ . %
@10 f=taee® o e™ M | kg ot e kMR e ™)
: L™ ()

) i

g ——

2r h2(s-l))_




We then estimate the first two terms on the right side of (4.5) using Lemma 2.2 as

follows:
I(Ol%% W, . "+t - dté“x,;"‘l) = Ao = &™)
¢, , .
n+l) 2 ~ N+l )2 = D12 2
@.1n 215 WEIE & wggtlite= @™0H° « Ha o= SM|%Y + k0]
- _‘: “ ml“2 R h2r . X 2
=16 H¢ 61 60%n
where
2 SRR g " a2 :
(4.12) On - I | 3 (+,8) ||ds < At I l—; (+,8) ds
tn it n At
by Schwarz's inequality. We note that
n+l 2
N-1 N-1 t 2 2
@an s §ool<an® | f Ia_; (o8 || as < (Au"——a‘; ,
n=0 n=0 tn t at Lz(J’Lz)

We next multiply each of the estimates (4.7)-(4.11) by At and sumon n, n = 0,...,¢0 - 1,

to obtain from (4.5)

t-1
tp2 * .02 2
Looallet - 0TI vey T e e

n=0 ,
t-1 -1
1 12 2 -
'L % e™He = D™ N3y + 5, T Nwe™ 238
n=0 n=0
(4.14)
t-1 b, -1 'y :
2 * 12 * 22
SRy I Ne®l%ae + 5 T Hwe™fae + ae = |I&0
n=0 n=0
K !il {low"]| + ke 1™ Pae tian)® o 0 <yt hy
K & - 4+ K (At + + h"
57 a=0 L™ (@) . *3

We see that an application of Gronwall's lemma would cowplete our argument if we did

not have the next to the last term on the right of (4.14). We shall use an induction
argument to treat this term. As an induction hypothesis assume that tor h sufficiently
small

for n = Qulicieol = 1

(4.15) o™ o < 2, ‘

L (®)

-18-




Using (2.2), Lemma 2.2, (2.11), (4.0), and (4.4) as in (3.16) we see that (4.15) clearly

holds for & = 1. Using (4.15) we see that if

- o BN
(4.16) At < ¢, (4K (2K, + K} by

then we have

-1 e-1
@an et en, Tl ae < kg, Tl 1Pae v ko fan? ¢ n?F 4 20870

n=Q n=0

Then an application of Gronwall's lemma gives us an estimate which, with (5.2), Lemma 2.2
(2.11), and (4.4) shows as in (3.16), that the induction hypotheses (4.2) and (4.15)
holds for n = . Finally an application of the triangle inequality coupled with Lemmas
2.1 and 2.2 and (4.4) vields the desired result.

Just as in Section 3}, if we make the assumption that b = b(x,c) in (1.2) is
independent of Vp, we can obtain optimal order L2 rates of convergence. The proof
will follow by combining the technigues of Theorem 3.4 with those of Theorem 4.1. We
obtain the following result.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Assume b = b(x,c) 1in

(1.2) is independent of Vp. There exist constants K ., t , and h such that, it

66° T0 0
2 2%k ny2 2 2
supllz= cf|* + 0" T vz - oI"at + v supllvv- p ||
(4.18) " ity "

2r 2s

< Kﬁﬁ((At)z % k i h2r02s-6)

.

As we mentioned at the end of Section 2, if we replace (2.15) by (2.17) and extrap-
olate the coefficients, we can replace the (At)2 in (4.17) and (4.18) by (At)4 and
get discretization errors in time which are 0((At)2). In order to do this we must
determine a starting procedure to obtain the approximation at time tl = At since
two levels must be known to determine the next level with this method. A predictor-
corrector version of (2.15) will suffice as a starting procedure of sufficient accuracy.

Since the proof techniques are similar to those presented in Theorem 4.1 and are




similar to those presented in (11, [21. (5], (8] and [10], we shall not present thew here.

We tequite slightly
Theorem 4.3.

(4.1

1

Q
and 1f 2 amd 2

(4.2Q0)

and

then there exist oot

n
t

————
-
s
(57
—

T

Theovem 4.4, U

and ho such that,

sup

‘l\

Lz 2 ~ 2 2 o
supllz - \-“20 h” F lle(z- \‘)n“-.\t +h" supllviw- p) e

Finally, in the case that b = b(x,c), we can use the techniques of Theorem 4.2

to obtain the following result for 2 defined in (2.17).

more smoothness on ¢ and p  for these results.

If we have the added smoothness on ¢ and p  that

)

et IR o2 Y.
Haetll 2 2 a2 Pl
® Tt R TS A

are determined to satisfy

Q 1 E
I N e R TU S 1| I W

b) W EeR <1 e, nwQ,l ,

istants K“‘). to. and h0 such that, if At < (0 and h <« h“.

N-1

n=0
0

b Tge2
€ kR ttant + 030 o n 309y

Inder the assumptions of Theorem 4.3, there exist constants &?0‘ (0.

if 4¢ < to and ho< hO' we have

i > “ N-1 - Y \ ) 4 »
2 - cll® + n* Y vz - ‘”'.\t ¢t h" osupliviw=- m ||°
n=0 P

> N
<k ltant + w34 n? |
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